MATH-6405: Learning and Teaching Geometry

Instructor: TBD
Email
Course Credit: 5.0 CTL credits

Dates \& Times:

This is a 5-credit, self-paced course, covering 13 modules of content. The exact number of hours that you can expect to spend on each module will vary based upon the module coursework, as well as your study style and preferences. You should plan to spend 12-20 hours per module, completing the module slides, readings, short answer assignments, labs, mastery exercises, practice problems, and module exams.

COURSE DESCRIPTION

This course is for teachers who intend to become middle school and/or high school mathematics teachers. This is a proof-based course that requires teachers to develop skills in writing deductive geometric proofs. It provides teachers with the background knowledge, at an introductory college level, of Euclidean Geometry and applies that knowledge when writing proofs and problem solving. While the focus will be on two-column proofs, there will be some exposure to other types of proof.

This course includes topics taken from the middle school and high school Common Core State Standards for Mathematics (CCSS) and the New Jersey State Standards for Mathematics. The focus is the conceptual development of points, lines, planes, angles \& proofs and their application to the understanding of triangles, similar triangles \& trigonometry, congruent triangles, circles, analytic geometry, transformations, quadrilaterals, area, volume, and probability.

PREREQUISITES/CONCURRENT COURSEWORK

Prerequisite courses: MATH6401, MATH6403; Concurrent course: MATH6402

STUDENT LEARNING OUTCOMES

Upon completion of the course, the student will be able to:

1. Apply the basic principles of Euclidean Geometry in the areas of the points, lines, planes, angles, proofs, parallel lines, triangles, similar triangles, trigonometry, congruent triangles, analytic geometry, transformations, quadrilaterals, area of figures, surface area, volume, and probability.
2. Apply student-centered pedagogy to teach mathematics to students.
3. Apply basic mathematical tools commonly used in geometry including inverse operations and problem solving.
4. Apply basic mathematical tools commonly used in geometry including skills in writing deductive geometric proofs and performing geometric constructions.
5. Identify, understand, and communicate the elements, representations, and models of equations to solve geometric problems.
6. Examine, investigate, and assess the relationships between various geometric models and their variables.

TEXTS, READINGS, INSTRUCTIONAL RESOURCES

Required Texts:

- This course uses a free digital text book accessible at: https://njctl.org/courses/math/geometry/
- Participants will download SMART Notebook presentations, homework files, labs, and teacher resources from the PMI Geometry course

Recommended Readings:

- Related articles within discussion prompts

COURSE REQUIREMENTS

Consistent attendance in your online courses is essential for your success. Failure to verify your attendance within the first 7 days of this course may result in your withdrawal. If for some reason you would like to drop a course, please contact your advisor.

Online classes have assignments and participation requirements just like on-campus classes. Budget your time carefully. If you are having technical problems, problems with your assignments, or other problems that are impeding your progress, let your instructor know as soon as possible.

GRADE DISTRIBUTION AND SCALE

In order to receive a Passing grade, the participant must complete the following course requirements:

- Short Answer Assignments
- Mastery Exercises
- Labs
- Exams,
- Reflection Paper (outlined below)

Grade Distribution:

Module Exams 70\%
Final Exam 10\%
Short Answer Assignments 6\%
Labs 6\%
Mastery Exercises 6\%

Grade Scale:

A	$93-100$
A-	$90-92$
B+	$86-89$
B	$83-86$
B-	$80-82$
C+	$77-79$
C	$73-76$
C-	$70-72$
D	$60.0-69.9$
F	59.9 or below

ACADEMIC INTEGRITY

Students must assume responsibility for maintaining honesty in all work submitted for credit and in any other work designated by the instructor of the course. Academic dishonesty includes cheating, fabrication, facilitating academic dishonesty, plagiarism, reusing /repurposing your own work, unauthorized possession of academic materials, and unauthorized collaboration.

CITING SOURCES WITH APA STYLE

All students are expected to follow proper writing and APA requirements when citing in APA (based on the APA Style Manual, 6th edition) for all assignments.

DISABILITY SERVICES STATEMENT

We are committed to providing reasonable accommodations for all persons with disabilities. Any student with a documented disability requesting academic accommodations should contact jamie@njctl.org for additional information to coordinate reasonable accommodations for students with documented disabilities.

NETIQUETTE

Respect the diversity of opinions among the instructor and classmates and engage with them in a courteous, respectful, and professional manner. All posts and classroom communication must be conducted in accordance with the student code of conduct. Think before you push the send button. Did you say just what you meant? How will the person on the other end read the words?

Maintain an environment free of harassment, stalking, threats, abuse, insults or humiliation toward the instructor and classmates. This includes, but is not limited to, demeaning written or oral comments of an ethnic, religious, age, disability, sexist (or sexual orientation), or racist nature; and the unwanted sexual advances or intimidations by email, or on discussion boards and other postings within or connected to the online classroom.

If you have concerns about something that has been said, please let your instructor know.

CLASS SCHEDULE

Module	Required Readings	Assignments
1	- N/A	- Short Answer - Lab - Mastery Exercise - Module Exam
2	- N/A	- Short Answer Assignment - Lab - Mastery Exercise - Module Exam
3	- N/A	- Short Answer Assignment - Lab - Mastery Exercise - Module Exam
4	- N/A	- Short Answer Assignment - Lab - Mastery Exercise - Module Exam
5	- N/A	- Short Answer Assignment - Lab - Mastery Exercise - Module Exam
6	- N/A	- Short Answer Assignment - Lab - Mastery Exercise - Module Exam
7	- N/A	- Short Answer Assignment - Lab - Mastery Exercise - Module Exam
8	- N/A	- Short Answer Assignment - Lab - Mastery Exercise - Module Exam
9	- N/A	- Short Answer Assignment - Lab - Mastery Exercise - Module Exam

10	- N/A	- Short Answer Assignment - Lab - Mastery Exercise - Module Exam
11	- N/A	- Short Answer Assignment - Lab - Mastery Exercise - Module Exam
12	- N/A	- Short Answer Assignment - Lab - Mastery Exercise - Module Exam
13	- N/A	- Short Answer Assignment - Lab - Mastery Exercise - Module Exam
14	- N/A	- Reflection Paper - Final Exam

