FOR TEACHING \& LEARNING

Progressive Mathematics Initiative ${ }^{\circledR}$ (PMI®) MATH-4405: Geometry

Course Credit: 1.0 Carnegie Unit

Dates \& Times:

This course covers all of the content normally taught in a full-year course. While it will take approximately 120 hours to complete, it is asynchronous, which allows students flexibility in scheduling. The exact number of hours will vary based on each student's study style and preferences.

LMS Link:

COURSE DESCRIPTION:

This is a proof-based course that requires students to develop skills in writing deductive geometric proofs. It provides background knowledge, at a college preparatory level, of Euclidean Geometry and applies that knowledge when writing proofs and problem solving. While the focus will be on two-column proofs, there will be some exposure to other types of proof.

This course includes topics taken from the Common Core State Standards for Mathematics (CCSS) and the New Jersey State Standards for Mathematics. The focus is the conceptual development of points, lines, planes, angles \& proofs and their application to the understanding of triangles, similar triangles \& trigonometry, congruent triangles, circles, analytic geometry, transformations, quadrilaterals, area, volume, and probability.

STUDENT LEARNING OUTCOMES:

Upon completion of the course, the student will be able to:

1. Apply the basic principles of Euclidean Geometry in the areas of the points, lines, planes, angles, proofs, parallel lines, triangles, similar triangles, trigonometry, congruent triangles, analytic geometry, transformations, quadrilaterals, area of figures, surface area, volume, and probability.
2. Apply basic mathematical tools commonly used in algebra including inverse operations and problem solving.
3. Apply basic mathematical tools commonly used in geometry including skills in writing deductive geometric proofs and performing geometric constructions.
4. Communicate the elements, representations, and models of equations to solve geometric problems.
5. Assess the relationships between various geometric models and their variables.

Required Texts:

- This course uses a free digital text book accessible at:
https://njctl.org/courses/math/geometry/

COURSE REQUIREMENTS:

Students are expected to meet the following course requirements:

1. Activities: A number of different learning activities will ensure participant engagement and learning in the course. These include:

- Engage in video module lessons which demonstrate minimized direct instruction followed by frequent formative assessment
- Completion of formative assessments aligned to learning objectives which include detailed analysis when answered incorrectly.

2. Mastery Exercises: For each module, these multiple-choice question quizzes assess the content knowledge gained in a module. Participants have the opportunity to retake; random questions are pulled from a larger question bank on each attempt ensuring varied questions.
3. Virtual Labs: In each module, a virtual lab write-up will be submitted. Virtual labs are interactive lab simulations that promote discovery-based student learning through real-world applications and analysis.
4. Module Exam: One is completed at the end of each module. It is a culminating exam consisting of multiple choice and free response questions aligned to the standards and objectives of the module.
5. Final Exam: At the end of the course, a comprehensive exam consisting of Multiple Choice and Free Response questions assesses the content knowledge learned throughout the course.

GRADE DISTRIBUTION AND SCALE:

Grade Distribution:

Module Exams 70\%
Final Exam 10\%
Labs 10\%
Mastery Exercises 10\%

Grade Scale:

A	$93-100$
A-	$90-92$
B+	$86-89$
B	$83-86$
B-	$80-82$
C +	$77-79$
C	$73-76$
C-	$70-72$
D	$60.0-69.9$
F	59.9 or below

ACADEMIC INTEGRITY:

Students must assume responsibility for maintaining honesty in all work submitted for credit and in any other work designated by the instructor of the course. Academic dishonesty includes cheating, fabrication,
facilitating academic dishonesty, plagiarism, reusing /re-purposing your own work, unauthorized possession of academic materials, and unauthorized collaboration.

DISABILITY SERVICES STATEMENT:

We are committed to providing reasonable accommodations for all persons with disabilities. Any student with a documented disability requesting academic accommodations should contact the Dean of Students, Dr. Rosemary Knab, additional information to coordinate reasonable accommodations for students with documented disabilities (rosemary@njctl.org).

NETIQUETTE:

Respect the diversity of opinions among the instructor and classmates and engage with them in a courteous, respectful, and professional manner. All posts and classroom communication must be conducted in accordance with the student code of conduct. Think before you push the Send button. Did you say just what you meant? How will the person on the other end read the words?

Maintain an environment free of harassment, stalking, threats, abuse, insults or humiliation toward the instructor and classmates. This includes, but is not limited to, demeaning written or oral comments of an ethnic, religious, age, disability, sexist (or sexual orientation), or racist nature; and the unwanted sexual advances or intimidations by email, or on discussion boards and other postings within or connected to the online classroom.

If you have concerns about something that has been said, please let your instructor know.

CLASS SCHEDULE:

Module	Required Readings	- Assignments
1 - Points, Lines, \& Planes	- PDFs of presentations within the module.	- Lab - Mastery Exercise - Module Exam
2 - Angles \& Introduction to Proof	- PDFs of presentations within the module.	- Lab - Mastery Exercise - Module Exam
3 - Parallel Lines	- PDFs of presentations within the module.	- Lab - Mastery Exercise - Module Exam
4 - Triangles	- PDFs of presentations within the module.	- Lab - Mastery Exercise - Module Exam
5 - Similar Triangles \& Trigonometry	- PDFs of presentations within the module.	- Lab - Mastery Exercise - Module Exam

6 - Congruent Triangles	- PDFs of presentations within the module. - Article embedded in discussion	- Lab - Mastery Exercise - Module Exam
7 - Circles	- PDFs of presentations within the module.	- Lab - Mastery Exercise - Module Exam
8 - Analytic Geometry	- PDFs of presentations within the module.	- Lab - Mastery Exercise - Module Exam
9 - Transformations	- PDFs of presentations within the module.	- Lab - Mastery Exercise - Module Exam
10 - Quadrilaterals	- PDFs of presentations within the module.	- Lab - Mastery Exercise - Module Exam
11 - Area of Figures	- PDFs of presentations within the module.	- Lab - Mastery Exercise - Module Exam
12 - 3D Geometry	- PDFs of presentations within the module.	- Lab - Mastery Exercise - Module Exam
13 - Probability	- PDFs of presentations within the module.	- Lab - Mastery Exercise - Module Exam
14 - Final Exam	- N / A	- Final Exam

